
Malware Detection Using Adaptive Data Compression

Yan Zhou
School of Computer and Information Sciences

University of South Alabama
Mobile, AL 36688

zhou@cis.usouthal.edu

Meador Inge
School of Computer and Information Sciences

University of South Alabama
Mobile, AL 36688

wmi601@cis.usouthal.edu

ABSTRACT
A popular approach in current commercial anti-malware soft-
ware detects malicious programs by searching in the code of
programs for scan strings that are byte sequences indica-
tive of malicious code. The scan strings, also known as
the signatures of existing malware, are extracted by mal-
ware analysts from known malware samples, and stored in
a database often referred to as a virus dictionary. This pro-
cess often involves a significant amount of human efforts.
In addition, there are two major limitations in this tech-
nique. First, not all malicious programs have bit patterns
that are evidence of their malicious nature. Therefore, some
malware is not recorded in the virus dictionary and can not
be detected through signature matching. Second, searching
for specific bit patterns will not work on malware that can
take many forms—obfuscated malware. Signature matching
has been shown to be incapable of identifying new malware
patterns and fails to recognize obfuscated malware. This
paper presents a malware detection technique that discov-
ers malware by means of a learning engine trained on a set of
malware instances and a set of benign code instances. The
learning engine uses an adaptive data compression model—
prediction by partial matching (PPM)—to build two com-
pression models, one from the malware instances and the
other from the benign code instances. A code instance is
classified, either as “malware” or “benign”, by minimizing its
estimated cross entropy. Our preliminary results are very
promising. We achieved about 0.94 true positive rate with
as low as 0.016 false positive rate. Our experiments also
demonstrate that this technique can effectively detect un-
known and obfuscated malware.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning; I.5 [Computing Methodologies]: Pattern Recog-
nition; I.7 [Computing Methodologies]: Document and
Text Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’08, October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-291-7/08/10 ...$5.00.

General Terms
Algorithms, Security

Keywords
malware detection, machine learning, statistical data com-
pression

1. INTRODUCTION
Many current commercial anti-virus programs are based

on pattern matching schemes that search for pre-defined bit
patterns, oftern referred to as scan strings or signatures,
that are indicative of malicious code. Although this type
of software has been very effective in detecting known ma-
licious code, there are some limitations. First, signatures
of known malicious code are extracted by malware analysts
and stored in a database often referred to as a virus dic-
tionary. Code scanning essentially checks whether there is
a match of stored signatures in scanned files. One prob-
lem with this reactive process is that a certain number of
computers must be infected before a new virus pattern can
be captured and stored for future use. The second problem
with this approach is that not all malware has bit patterns
that are indicative of the presence of malicious intent. Thus,
some malware cannot be detected simply through signature
matching. In addition, a virus dictionary often requires fre-
quent update as new “viruses” are created and discovered,
which “entails a significant amount of effort on the part of
human virus experts”while “even the best experts have been
known to select poor signatures.” [10] Another limitation of
signature based anti-virus software is their susceptibility to
obfuscated malware. As malware programmers get more so-
phisticated, defining bit patterns of malicious programs has
become more challenging. It is now common to see adver-
saries obfuscate their malicious code to make it unrecogniz-
able in order to foil existing anti-virus software. An ideal
anti-virus utility should be able to both detect existing ma-
licious code in any forms and identify new patterns that have
not been encountered before.

Several machine learning techniques have been investi-
gated for identifying unknown malicious executables, includ-
ing neural networks [10], naive Bayes [14], k-nearest neigh-
bor, support vector machines, decision trees, and boosted
classifiers [11]. Although the results are promising, all these
techniques share a common constraint—construction of struc-
tured input—because standard learning algorithms expect
structured input such as vectors. However, executables,
like text documents, are naturally unstructured, therefore

must be preprocessed to form the structured input expected
by the learning algorithms. Such preprocessing is normally
done by extracting features (signatures, byte sequences, bi-
nary profiles, etc.) from executables and subsequently se-
lecting the most relevant features for learning. Unfortu-
nately, such preprocessing is error-prone, and may not be
able to make full use of the source data as a result of feature
selection. Thus, the outcome of all the previous attempts
of using machine learning and data mining techniques for
malware detection relied heavily on the specific feature ex-
traction process used to create feature vectors from the ex-
ecutable code.

In this paper, we propose a new malware detection tech-
nique using a learning methodology that works on unstruc-
tured input, that is, raw executables, with an underlying sta-
tistical compression model. The general idea of this method
is to construct two compression models, one from a collection
of malicious code and one from a collection of benign code.
A new executable is classified according to which of the re-
sulting models compresses the code more efficiently. The
proposed unstructured learning technique has a number of
advantages over standard machine learning algorithms that
only work on structured input. First, the compression al-
gorithms work on the character-level raw executables rather
than the preprocessed subset of the original code. For this
reason, preprocessing and feature selection, both of which
are highly prone to error, are unnecessary. Instead the algo-
rithm is able to make full use of all features of executables.
Another benefit of the character-level nature of the compres-
sion algorithms is that they are more robust to obfuscation.
Adversaries often disguise the malicious code by producing
polymorphic malicious code, for example, through packing,
code reordering, and junk insertion [2]. This can cause a
standard learning algorithm to fail to identify the disguised
malicious code unless extra care and effort are expended to
detect and deal with these obfuscations [2, 9, 12, 13, 15].

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 provides a review of
the statistical compression model used to build the learning
engine, and presents our malware detection technique. Our
preliminary results are presented in Section 4. Section 5
concludes our work and discusses future directions.

2. RELATED WORK
Although malware detection is a well-established research

field, there has been relatively little published research on
using machine learning and data mining techniques to de-
tect malicious code. In one of their early attempts, Kephart
et al. [10] showed that nearest-neighbor classification with
Hamming distance or edit distance performs poorly for de-
tecting boot sector viruses because of the negligible differ-
ence a short string of viral code makes. Instead, they built
a neural network to discriminate between infected and un-
infected code. The input to the neural network is a set of
trigrams—3-byte strings. They extracted a set of trigrams
that appear frequently in viral boot sectors but rarely in
legitimate ones and produced 25,000 distinct trigrams. In
addition, they performed feature pruning in order to avoid
having the classifier generalize poorly on new viral instances.
As a result, a “cover” of trigrams, with at least one trigram
representing each viral instance, is defined and a 4-cover was
selected for use in their experiments. A 4-cover is a set of
trigrams in which at least four different trigrams represent

each viral instance. Each viral instance is now reduced to a
4-cover, with the presence of each trigram set to 1 and its ab-
sence set to 0, which defines the vector input to their neural
network. Since no legitimate instances contain any of the tri-
grams extracted from the viral instances, the learning prob-
lem is ill-defined. To solve this problem, they introduced
one artificial negative example for each trigram feature, in
which that trigram feature has a value of 1 and the rest of
the feature values are 0. They reported a false positive rate
of 0.0002 measured on artificial boot sector instances, and a
false negative rate of 0.15.

A recent work on learning to classify malicious executables
compares the performance of several machine learning algo-
rithms [11]. Kolter et al. collected 1,971 benign and 1,651
malicious executables as their training examples. They con-
verted each executable to hexadecimal code and produced
n-grams of byte code—by packing each 4-byte sequence—as
features. The process resulted in over 255 million distinct
n-grams. They performed feature selection using informa-
tion gain and selected the 500 most relevant n-grams as fea-
tures for classification. From the results of a small-scale
study varying the sizes of n-grams and the numbers of fea-
tures, it was concluded that 4-grams and 500 features appear
to produce the best results. They experimented with four
machine learning algorithms—näıve Bayes, decision trees,
support vector machines, and boosting—and reported the
results of running stratified ten-fold cross-validation. They
concluded that boosted decision trees outperform all other
learning methods they have tried. They also tried classify-
ing malware based on payload functions, such as backdoors
and mass-mailing, and achieved 0.9 AUC (areas under the
ROC curve). In addition, they applied their trained mal-
ware detector to 291 new malicious code that were not used
for training, and booted decision tree achieved 0.98 true-
positive rate and 0.05 false-positive rate.

Our work is largely inspired by recent work on filtering
e-mail spam using statistical data compression models [18,
1]. Spam filtering and malware detection share some com-
mon ground. Both are working against adversaries aiming to
create unwanted disruptions of the normal use of computers.
When machine learning techniques are involved, both need
to handle unstructured input, either e-mail or executable
code, and both have to be robust to adversarial attacks such
as obfuscation to remain practical.

In an early attempt [18] of using statistical compression for
filtering e-mail spam, a spam filtering strategy was proposed
to use a practical entropy coding theory—huffman coding—
to dynamically encode the feature space of e-mail collected
over time, and apply online learning to adapt to new spam
concepts. The feature space is defined over two Huffman
prefix trees, one constructed from the spam corpus and the
other from the legitimate corpus. Classification of an e-mail
message is indicated by its score computed from the two
prefix trees.

A relatively new idea of using context-based statistical
data compression algorithms for spam filtering was recently
proposed [1]. Bratko et al. proposed and investigated the
use of character-level data compression models for spam fil-
tering. The general idea is to construct two compression
models, one from a collection of spam e-mails and one from
a collection of legitimate e-mails, and then to classify a
message according to which of the resulting models com-
presses the message more efficiently. Using statistical data

compression for spam filtering has a number of advantages
over machine learning algorithms that use word-level mod-
els. First, the compression algorithms work on the character
level rather than the word level. For this reason, preprocess-
ing and feature selection, both of which are highly prone
to error, are unnecessary. Instead the algorithm is able to
make full use of all message features. Another benefit of the
character-level nature of the compression algorithms is that
they are more robust to obfuscation. Spammers often dis-
guise spammy words by deliberately misspelling them or by
inserting punctuation between characters. This can cause a
word-level spam filter to misclassify e-mails containing such
words unless extra care and effort are expended to detect and
deal with these obfuscations. Bratko et al. [1] implemented
their compression-based spam filter using the prediction by
partial matching algorithm with escape method D (PPMD).
Their experiments for the Trec 2005 spam track showed
promising results. They also demonstrated that their filter
was indeed quite robust to obfuscation.

3. MALWARE DETECTION USING STATIS-
TICAL DATA COMPRESSION MODELS

In previous studies by several researchers, compression-
based classification models have shown great success in the
domain of e-mail spam filtering [18, 1]. The common ground
between spam filtering and malware detection has open a
new avenue for research in this area. As mentioned earlier,
both research fields involve discriminating between legiti-
mate and illegitimate instances, for example, spam versus le-
gitimate e-mails and malware versus benign programs. The
discriminating methods used in both areas need to deal with
unstructured input, either plain text or raw executable code.
Furthermore, for those discriminating methods to remain
practical in the wild, they have to be robust to deliberate,
adversarial attacks, such as obfuscated e-mail or malware,
that aim to disguise the presence of the malicious intent of
the adversary. In this section, we discuss the general idea of
compression-based classification, review the statistical com-
pression model—prediction by partial matching (PPM), as
well as present the classification model that will be used to
identify malware in our experiments.

3.1 Classification versus Data Compression
Data compression works by assigning a more compact rep-

resentation to frequently recurring patterns in data. Like-
wise, many machine learning algorithms rely on identifica-
tion of frequent data patterns to build classification models.
In the domain of spam filtering and malware detection, sta-
tistical compression models, especially character-level com-
pression models, are appealing for the following reasons:

• compression-based models can take raw data, such as
e-mail and executables, as input, skipping error-prone
preprocessing;

• compression-based models are potentially more robust
to character-level adversarial attacks such as text ob-
fuscation in e-mail and polymorphic/metamorphic viruses,
and

• some of the best compression models, if implemented
properly, are not CPU time demanding, thus suitable
for operating in the real e-mail environment.

With that said, compression based classification models have
drawbacks. First, runtime efficiency does come with a price
of high memory demand. Although, some of the memory
cost can be ameliorated by using pruning strategies. Drinic
et al. show one technique that can reduce memory consump-
tion by as much as 70% while still maintaining the same level
of compression ratios [6]. Second, it is simply not intuitive
to build high level abstract concepts directly at the charac-
ter level. Finally, compression-based learning models have
not shown superior performance against traditional machine
learning approaches in other text classification problems.
One reason for this is that machine learning methods are
particularly adept at honing in on a few features that can
uniquely indentify the class of an instance. There is no such
abandonment of irrelevant features with compression-based
approaches [7]. Nonetheless, the previous study [1] shows
that using statistical data compression in spam filtering has
produced very promising results. Our focus is on applying
and investigating this approach in the domain of malware
detection.

3.2 Prediction by Partial Matching
Statistical compression methods follow the basic proto-

col of arithmetic coding [17]. Given a sequence of symbols,
the encoding for the ith symbol depends on its probability
in the current context. Different compression methods build
different statistical models to predict the symbol probability.
The best ones [3, 5, 4] among the context-based adaptive ap-
proaches give a good estimate of the true entropy of data by
using symbol-level dynamic Markov modeling. For example,
prediction by partial matching (PPM) [3] predicts the sym-
bol probability conditioned on its k immediately proceeding
symbols, forming a kth order Markov model. A dynamic
context length is used to look for the longest string match
between the current sequence and the ones that occurred
previously. More specifically, the algorithm first looks for
a match of an order-k context. If such a match does not
exist, it looks for a match of an order k − 1 context, until
it reaches order-0. Whenever a match is not found in the
current context, the total probability is adjusted by what is
called an escape probability. The escape probability models
the probability that a symbol will be found in a lower-order
context. If the symbol is not predicted by the order-0 model,
a probability defined by a uniform distribution is predicted.
Therefore, given an input X = x1x2 . . . xd of length d, where
x1, x2, . . . , xi is a sequence of symbols, its probability given
a compression model M can be estimated as

p(X|M) =

d
Y

i=1

p(xi|x
i−1

i−k) (1)

where xj

i = xixi+1xi+2 . . . xj for i < j.
In general the PPM algorithm maintains a map from con-

texts to probability distributions. The map is initially empty
and as new contexts are seen during processing, new prob-
ability distributions are created. When a symbol is encoun-
tered under a context already existing in the map, the statis-
tics are adjusted accordingly. In practice, there are several
policies for how the symbol and escape probabilities are ad-
justed.

As a simple illustrative example consider the estimated
probability produced for the sequence of symbols “macabre”
with k = 1 under alphabet Σ, where |Σ| = 256 (Extended

ASCII). Assume that the model, M , has the context to prob-
ability distribution mapping in Table 1, that was obtained
from processing“abracadabra”. Note that the univeral prob-
ability is 1

250
instead of 1

256
since we already have statistics

for the symbols {a, b, c, d, r, Escape}. Again, there are many
different policies for how these probability distributions are
maintained. For the purpose of this example it is only im-
portant that they somehow exist. Per Equation 1 we must
compute

P (macabre|M) = p(m|λ)p(a|m)p(c|a)p(a|c)

· p(b|a)p(r|b)p(e|r)

=

„

5

13
·

1

250

« „

4

13

« „

1

7

« „

1

2

«

·

„

2

7

« „

2

3

« „

1

3
·

5

13
·

1

250

«

= 3.30279282097e−09

The third through six factors are trivial as we already have
statistics for those symbols under their provided context.
The first factor is calculated by multiplying the escape prob-
ability, 5

13
, under the empty context λ times the universal

probability for m. The second probability is just the proba-
bility of a under λ, since we have no statistics on the context
m. The last context is the escape probability, 1

3
, under r

times the escape probability, 5

13
, under λ times the univer-

sal probability for e. Note that the escape probalities in the
preceding formula slightly reduce the total probability when
a symbol is not found in the current context.

Table 1: Frequency Table

context distribution

a

b 2

7

c 1

7

d 1

7

Escape 3

7

r
a 2

3

Escape 1

3

b
r 2

3

Escape 1

3

c
a 1

2

Escape 1

2

d
a 1

2

Escape 1

2

λ

a 4

13

b 1

13

c 1

13

d 1

13

r 1

13

Escape 5

13

Universal 1

250
, for c ∈ Σ|c /∈ {a, b, c, d, r,Escape}

3.3 Classification with Statistical Compression
Models

To simplify the description of the compression-based clas-
sification algorithm, we assume a binary classification prob-
lem. Given a set of training data of a binary classification
problem, the algorithm works as follows. First, it builds two
compression models M+ and M−, one from each class, us-
ing the PPM algorithm with a kth order Markov model. For
each new instance X = x1x2 . . . xd of length d that needs to
be classified, the average number of bits required to encode
the instance is computed using the two compression models
M+ and M−, respectively, as follows:

B(X|M+) = −

d
X

i=1

log p(xi|x
i−1

i−k, M+)

B(X|M−) = −
d

X

i=1

log p(xi|x
i−1

i−k, M−).

The classification of X is determined by the model that pro-
vides a better compression rate:

c(X) = arg min
c∈{+,−}

B(X|Mc)

= arg min
c∈{+,−}

−
d

X

i=1

log p(xi|x
i−1

i−k, Mc).

The pseudocode for the algorithm is given in Algorithm 1.

Algorithm PPM Classifier

Input: Training set T = T+ ∪T−, test set
P = {X1, . . . , Xn}, and the order of the
Markov model in PPM, k

Output: Classification c(Xi) ∈ {+,−} of
Xi ∈ P, for i = 1, . . . , n.

M+ ← CreatePPM(T+);
M− ← CreatePPM(T−);
forall X ∈ P do

Bits(X,M+) = ComputeBits(X,M+) ;
Bits(X,M−) = ComputeBits(X,M−);
c(X) = arg minc∈{+,−}Bits(X, Mc);

end

Algorithm 1: PPM-based classification

The PPM-based classification model has been extensively
studied in the spam filtering domain [1]. Its performance in
spam filtering is very promising. In this paper, we investi-
gate its applicability to the problem of malware detection.
Note that the applicability of compression-based classifica-
tion algorithms to real classification problems may be hin-
dered by the large demand on memory resources. The space
requirement of the compression model increases exponen-
tially with the order of the underlying Markov model, since
essentially any context of length between 0 to the max order
must be stored. In addition, the classification model is built
at the character level, and thus provides no insights of the
hidden (malware and spam) patterns.

4. EXPERIMENTAL SETUP AND PRELIM-
INARY RESULTS

In this section, we present the details of the setup of
our experiments and our preliminary results on a collection
of benign code and malware code executable on Windows
XP plafforms. Note that the technique presented is general
enough to be applicable to any platform environment.

4.1 Data Source
We collected a set of 2027 distinct Windows EXE and

DLL files from the “Program Files” and “system32” folders
on standard Windows XP machines, among which 452 (22%)
were randomly selected and used for training and 1575 (78%)
were used for testing. We also collected 1434 malicious
code from the web site VX Heavens (http://vx.netlux.org),
among which 439 (30%) were randomly chosen and used for
training and 995 (70%) were used for testing. The collection
of malicious code includes four types of malware: backdoor,
worm, Trojan, and virus. We converted each executable to
hexadecimal codes using a standard Unix hexdump utility.
All headers and white spaces are removed.

4.2 Preliminary Results
The size of the executables in the training set varies from

431 bytes to about 5.5M bytes. Since memory usage in-
creases polynomially as the size of code instances increases,
we decided to use a subset of each instance in the training
set to build the two compression models. We setup and ran
three experiments. In the first experiment, we used only
the first 2000 bytes in each hexadecimal code in the training
data to build the two compression models for classification.
In our second and third experiments, we used the first 10,000
bytes and 50,000 bytes in each instance in the training data,
respectively.

We present our experimental results as ROC curves. The
ROC curves in this paper are represented using the true
positive rates and the false positive rates. ROC curves are
typically used to show the tradeoff between sensitivity (true
positive rate) and specificity (1- false positive rate). The
total area under a ROC curve (AUC) is also commonly used
as a metric to compare binary classifiers. Figures 1—3 show
the ROC curves of the outcome of our three experiments.
We also list, in Table 2, the accuracy, true positive rate
(TPR), false positive rate (FPR) and AUC values from the
three experiments in which 2000, 10,000 and 50,000 bytes of
each executable in the training set are used for building the
compression model, respectively.

Table 2: The accuracy, true positive rate (TPR),
false positive rate (FPR) and AUC values from the
three experiments in which 2000, 10,000, and 50,000
bytes in each training sample are used for training,
respectively.

Accuracy TPR FPR AUC

Exp. 1 (2KB) 0.950 0.983 0.070 0.956

Exp. 2 (10KB) 0.961 0.927 0.017 0.955

Exp. 3 (50KB) 0.966 0.938 0.016 0.961

Figure 1: ROC curve for the first experiment in
which only the first 2000 bytes are used for building
the compression models.

Figure 2: ROC curve for the first experiment in
which only the first 10,000 bytes are used for build-
ing the compression models.

4.3 Discussions
In our experiment, we used a training set of a much smaller

size compared to the size of the test set, thus some of the
malicious code was not available for training. As a matter
of fact, some malicious code in the test set is fundamentally
different than the one our model was built on. This allows
us to test the ability of the PPM-compression based classi-
fication algorithm to identify unknown malware or variants
of the existing malware, for example obfuscated malware,
that are not available for training. Our experimental re-
sults show that for less than 0.02 false positive rate, we can
achieve close to 0.94 true positive rate. And if a false posi-
tive rate of 0.07 is tolerable, we can achieve more than 0.98
true positive rate.

There are several reasons that the compression-based clas-
sification algorithms work well in the domain of malware
detection. First, compression-based classification algorithms
form the decision boundary of a classification problem based

Figure 3: ROC curve for the first experiment in
which only the first 50,000 bytes are used for build-
ing the compression models.

on the average number of bits used for encoding the exe-
cutables. The idea is similar to classification by minimum
cross-entropy [1] since the average number of bits required
for encoding an instance is essentially the cross-entropy of
the instance estimated using the PPM compression models.
Second, by taking the raw executables as input, this type
of learning algorithms can make use of full features of exe-
cutables, some of which may be lost during feature pruning
in standard learning processes. Third, techniques that ad-
versaries use to make their malicious code unrecognizable
to signature scanning can, in fact, help compression-based
learning algorithms detect the malicious code. For example,
one of the most common approaches to creating obfuscated
viruses is code-reordering through the insertion of random-
ized jump instructions. The compression-based classifica-
tion algorithms can easily discriminate this pattern from in-
struction sequences of legitimate code by statically ruling
out the likelihood of observing the jump instructions in cer-
tain context. Another obfuscation technique that is often
used is packing, which encrypts or compresses the data and
code sections of an infected executable, and inserts a decryp-
tion routine that executes at runtime to recover the original
data and code sections. This technique also makes the in-
fected executables look different to the compression-based
algorithms at the bit/character level. For the same reason,
semantic nops (junk instructions that do not affect program
behavior) can also be caught easily by the compression-based
classifiers.

5. CONCLUSIONS AND FUTURE WORK
We propose to apply compression-based classification al-

gorithms to detecting malicious code. These type of learning
algorithms take the raw data, for example executable code,
as input and form a decision boundary based on the av-
erage number of bits required to encode the data. For a
binary classification problem, two compression models are
built using the prediction by partial matching algorithm,
one from each class. A new instance is classified according
to the model that produces a better compression rate. We

investigated the applicability of compression-based learning
algorithms by running three sets of experiments on a col-
lection of benign and malicious code executables found on
the Windows platform. The preliminary results are very
promising. Also note that this approach can be applied to
data collected from any other platform.

The compression-based algorithms have some limitations.
First, the applicability of these type of techniques to real
applications is limited due to the fact that the underlying
statistical compression models consume large amounts of re-
sources. Second, compression-based classification models do
not explicitly identify concept drift and adapt to it. More-
over, compression-based learning models are insensitive to
subtle differences between different classes when the num-
ber of discriminative features is small [16].

Another area of exploration is to determine what type of
methods a potential adversary could use to alter their mal-
ware in order to trick the compression-based classifier into
assigning false-negatives. Attacks using words known to be
considered good by a classifier are common in spam filtering
and compression-based spam filters are known to be suscep-
tible these attacks [8]. We plan to perform further analysis
to determine what types of attacks could be successful in
the compression-based malware classification domain.

In the future, we plan to enhance the compression-based
classification models by pruning the underlying compression
models and eliminating the features that are less important
in defining the decision boundary of a classification problem.
We also plan to compare our model with other state-of-art
models that have been devised to detect malware. Further-
more, we plan to design a similar compression-based learning
algorithm that is incremental and adaptive.

6. ACKNOWLEDGEMENT
The authors would like to thank Zach Jorgensen for his

help, valuable ideas, and comments.

7. REFERENCES
[1] A. Bratko, G. Cormack, B. Filipič, T. Lynam, and

B. Zupan. Spam filtering using statistical data
compression models. Journal of Machine Learning
Research (JMLR), 7:2673–2698, December 2006.

[2] M. Christodorescu, S. Jha, J. Kinder,
S. Katzenbeisser, and H. Veith. Software
transformations to improve malware detection.
Journal in Computer Virology, 3:253–265, 2007.

[3] J. Cleary and I. Witten. Data compression using
adaptive coding and partial string matching. IEEE
Transactions on Communications,
COM-32(4):396–402, 1984.

[4] J. Cleary and I. Witten. Unbounded length contexts
of ppm. The computer Journal, 40(2/3):67–75, 1997.

[5] G. Cormack and R. Horspool. Data compression using
dynamic markov modeling. The Computer Journal,
30(6):541–550, 1987.

[6] M. Drinic, D. Kirovski, and M. Potkonjak. Ppm model
cleaning. In DCC ’03: Proceedings of the Conference
on Data Compression, page 163, Washington, DC,
USA, 2003. IEEE Computer Society.

[7] E. Frank, C. Chui, and I. Witten. Text categorization
using compression models. In IEEE Data Compression

Conference (DCC-00), pages 200–209. IEEE CS Press,
2000.

[8] Z. Jorgensen, Y. Zhou, and M. Inge. A multiple
instance learning strategy for combating good word
attacks on spam filters. Journal of Machine Learning
Research (JMLR), 9:1115–1146, June 2008.

[9] S. Josse. Secure and advanced unpacking using
computer emulation. Journal in Computer Virology,
3:221–236, 2007.

[10] J. Kephart, G. Sorkin, W. Arnold, D. Cheese,
G. Tesauro, and S. White. Biologically inspired
defenses against computer viruses. In Proceedings of
the 14th International Joint Conference on Artificial
Intelligence (IJCAI95), pages 985–996. Morgan
Kaufman, 1995.

[11] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of
Machine Learning Research, 7:2721–2744, 2006.

[12] C. Nachenberg. Us patent no. 5,826,013: Polymorphic
virus detection module, 1998.

[13] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In ACSAC
’06: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Computer
Security Applications Conference, pages 289–300,
Washington, DC, USA, 2006. IEEE Computer Society.

[14] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data
mining methods for detection of new malicious
executables. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 38–49, Los Alamitos,
CA, 2001. IEEE Press.

[15] S. K. Udupa, S. K. Debray, and M. Madou.
Deobfuscation: Reverse engineering obfuscated code.
In WCRE ’05: Proceedings of the 12th Working
Conference on Reverse Engineering, pages 45–54,
Washington, DC, USA, 2005. IEEE Computer Society.

[16] I. Witten. Applications of lossless compression in
adaptive text mining. In Proceedings of the 34th
Annual Conference on Information Sciences and
Systems (CISS-00), New Jersey, 2000.

[17] I. Witten, R. Neal, and J. Cleary. Arithmetic coding
for data compression. In Communications of the ACM,
pages 520–540. June, 1987.

[18] Y. Zhou, M. S. Mulekar, and P. Nerellapalli. Adaptive
spam filtering using dynamic feature space. In ICTAI
’05: Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence, pages
302–309, Washington, DC, USA, 2005. IEEE
Computer Society.

